PREPARED BY: DATE		SPEC NO.	EC-96812
5 AUG. 1996	CHADD	FILE NO.	
\sim . Of $v_1 co$	SHARP	ISSUE	5 AUG. 1996
CHECKED BY: DATE	ELECTRONICA COMPONENTES CROLLD	PAGE	7
M a/ () 5 AUG. 1996	ELECTRONIC COMPONENTS GROUP	REPRESENTAT	IVE DIVISION
M. Kirota	SHARP CORPORATION		IC COMPONENTS DIV.
APPROVED BY: DATE		☐ OPTICAL 1	DEVICE DIV.
5 AUG. 1996		□ РНОТО У	OLTAICS DIV.
M. Ohgushi	SPECIFICATION		
	DEVICE SPECIFICATION FOR LOW NOISE BLOCK DOWNCONVERTS MODEL No. BSCU86L70	ER	
	<u> </u>		
	L PU	BL'SH	ED
	-	6 09 19	96
	SHAR	I TOR WAT	TON
☐ CUSTOMER' S APPROVAL	•	ioNie GoMPo	
	ENGI	NEERING D	EPT
DATE	· · · · · · · · · · · · · · · · · · ·		
	PRESENTED		
ВУ		Jurine	h-
		y was a second	······
	MIYOSHI	YAMAUC	H I
	GENERAL MAN	IAGER	

ENGINEERING DEPARTMENT 1

ELECTRONIC COMPONENTS DIVISION

ELECTRONIC COMPONENTS (ELECOM) GROUP

MODEL No.	PAGE
BSCU86L70	1

General Description

The Dual Pole Low Noise Block Down-Converter is used in combination with an antenna for Ku band, and this converter can receive both Horizontally and Vertically polarized signals,

Attached Reference Materials

- 1. Outline drawing
- 2. Block diagram

1. GENERAL SPECIFICATIONS

1-1 Input component C-120

1-2 Receiving frequency range: 10.70-11.70GHZ(LOW Band)

11.70 -12.75 GHz(High Band)

1-3 Local oscillation frequency 9.75 GHz(Low Band)

10.60 GHz(High Band)

1-4 Output Frequency 950-1950 MHz(Low Band)

1100 -2150 MHz(High Band)

1-5 Output component F-type female connector(with water-proof)

1-6 Nominal output impedance 75Ω

1-7 Supply Voltage & Control signals: 11.5-19. 0V

continuous $22kHz(\pm 4kHz)$

1-8 Power supply system IF output overlapping system

1-9 Weight 240g

2. AMBIENT CONDITIONS

2-1	Operating temperature	-40 ୯~+60 ୯
2-2	Storage temperature	-40 ℃~+60℃
2-3	Humidity	5%-95 % RH*1
2-4	Ambient pressure	$1010 \pm 300 \text{ hPa}$

*Caution:

When a coaxial cable is connected to F-type connector, length of bared core area into the connector should be within $7\sim11$ mm.

MODEL No.	PAGE
BSCU86L70	2

3. ELECTRICAL CHARACTERISTICS

Unless otherwise indicated, each of the following specified values is applicable under normal ambient temperature and humidity conditions.

No.	Item	Specification		1	Condition	
		Min Typ Max Unit		Unit		
3-1	Operating Frequency Band					
3-1-1	Input Frequency	10.70		11.70	GHz	Low-Band
		11.70		12.75	GHz	High-Band
3-1-2	Output Frequency	95C		1950	GHz	Low-Band
		1100		2150	GHz	High-Band
3-2	Noise figure*1		1.3	1.5	dВ	Low-Band @25℃
			1.1	1.3	dВ	High-Band @25℃
3-3	Conversion gain	46			dB	Center Freq. at Each Band
3-4	Gain Frequency		7.0		dBpp	Low-Band
	Characteristics		7.0		dBpp	High-Band
			1.0		dBpp	Within any 26MHz segment
3-5_	L. 0. Frequency and drift					
3-5-1	L. 0. Frequency		9.75		GHz	Low-Band
			10.6 c		GHz	High-Band
3-5-2	Drift associated with			±3	MHz	at -40°C∼+60°C
	Temperature change					
3-6	L. 0. Phase Noise			-50	dBc	@ lkHz Offset at High-Band
				-75	/Hz	@10kHz Offset at High-Band
				-95		@100kHz Offset at High-Band
3-7	1dB output gain		0		dBm	
	compression					
3-8	L. O. Spurious radiation			-60	dBm	
	at signal Input					
3-9	Image interference		80		dB	
	suppression ratio					

MODEL No.	PAGE
B s C U 8 6 L 7 0	3

No.	Item	Specification			Condition	
		Min	Тур	Max	Unit	
3-1o	Cross-Polar	20	25		dB	
	Discrimination					
3-11	Return Loss at Output		8		dB	
3-12	Supply Voltage and	11.5		14.0	₩	Ca:Vertical Polarization
	Control signals	16. 0		19. 0	v	Cb:Horizontal Polarization
		18.0	22.	26 .0	k Hlz	Cc:High Band selection
3-13	Current consumption		110	1300	mA	

*1 The value is applicable under the measurement method of SHARP. Measuring accuracy for Noise Figure $\Rightarrow \pm 0.2 dB$

MO DEL No.	PAGE
BSCU86L70	4

4. RELIABILITY TESTING

4-1 Low temperature shelf test (unpacked condition)

After the test samples are left at -30°C for 100 hours and then at normal temperature and humidity for 2 hours, normal operation shall be observed without any defects in appearance.

- 4-2 High temperature and humidity shelf test (packed condition)

 After the test samples are left at 60°C 90% RH for 100 hours and then at normal temperature and humidity for 8 hours, normal operation shall be observed without any defects in appearance.
- 4-3 Heat cycle test (with current supplied to unpacked component)

 The test samples are first subjected to 5 heat cycles, each consisting of three stages: 2 hours at -30°C, 20 hours at 50°C and 95% RH, and 2 hours at 65°C.

 After samples are subsequently left at normal temperature and humidity for 8 hours, normal operation shall be observed in each internal part without any defects in appearance.
- 4-4 Salt water spray test

After the test samples are left in a shower of salt water (salt concentration $5\pm1\%$) at $35\pm2\%$ for 48 hours, normal operation shall be observed.

4-5 Electrostatic shock test

After discharging 500pF.15kV surge voltage, stored in a capacitor, 4 times at each of the optionally selected points of the test samples exterior via a 150Ω resistor connected in series, there shall be component damage without any defects in appearance.

4-6 Lighting resistance test

Lighting resistance test shall be conducted at the non-operative LNB output terminal.

•	MODEL No.			PAGE
	вѕси8	6ь7	0	5

4-7 Vibration test (packed condition)

Apply vibration (full amplitude of 1.5mm at 10-30HZ) in specified direction(s) and duration according to as-packaged component weight shown below;

- a) For components weighting 10kg or less, 0.5 hour in each of the X, Y and Z-directions.
- b) For those weighting over 10kg but no more than 50kg, 30 minutes in only one direction, along either side of the component packing.

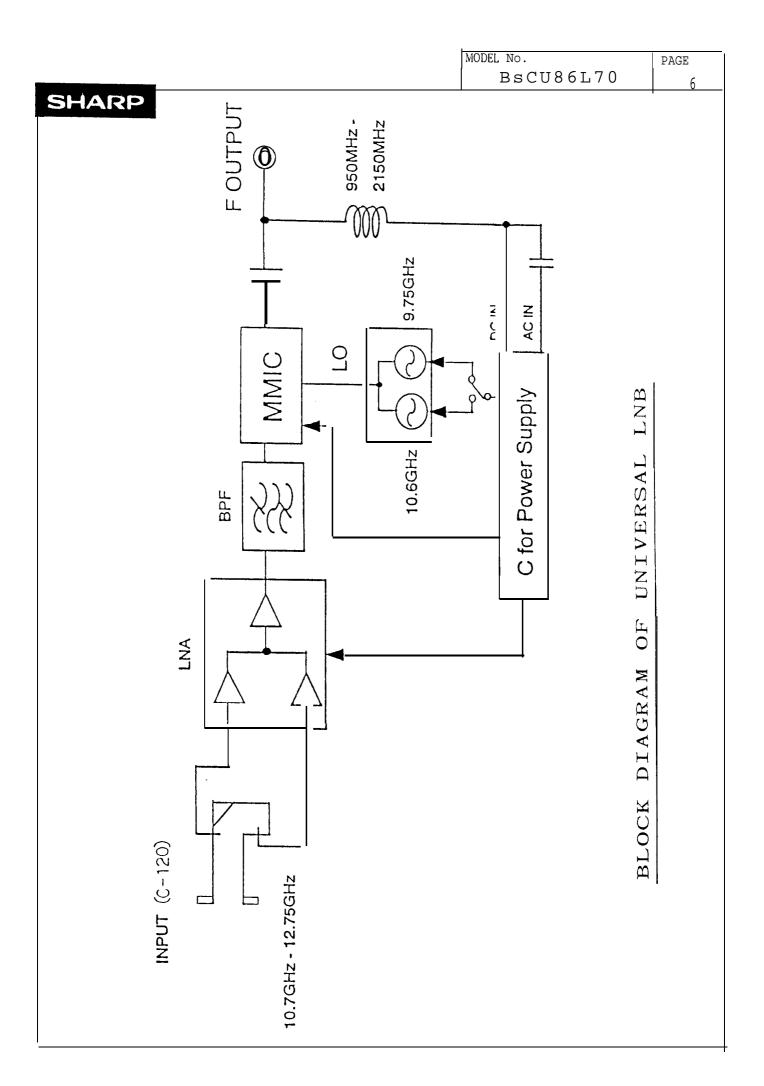
After the test, normal operation shall be observed without any defects in appearance.

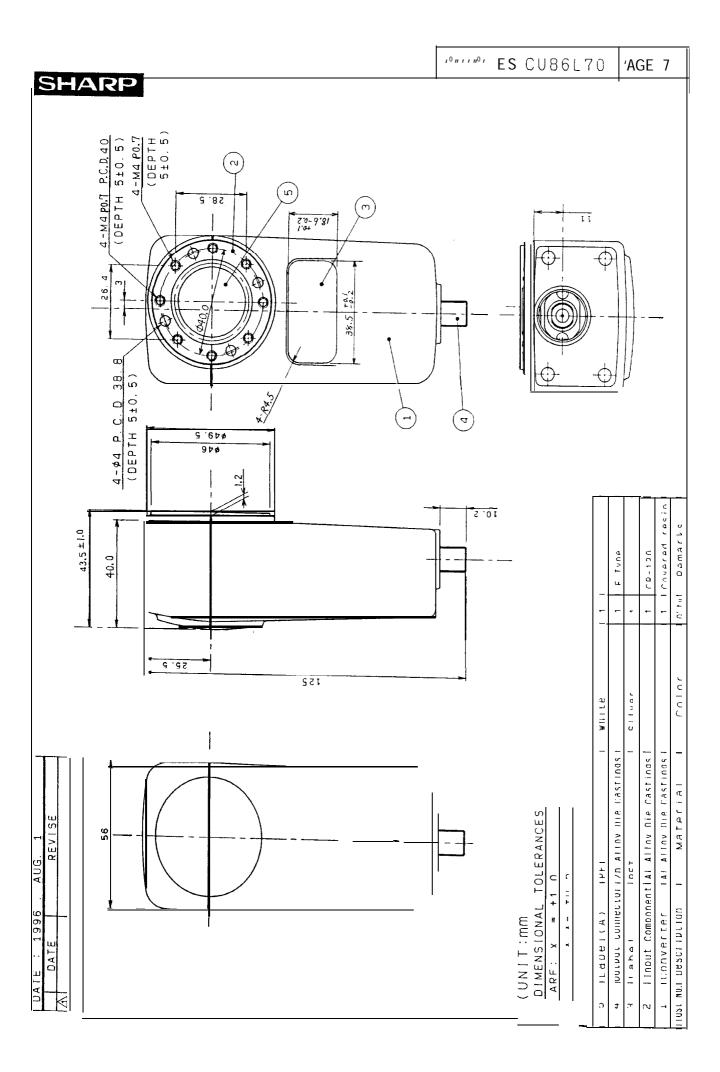
4-8 Drop test (packed condition)

One corner: One optimally selected corner of the plane which constitutes the bottom of the packing.

3 edges : One short and two long edges which define the corner selected for the drop test; start with the shorter edge and follow with the remaining longer ones.

6 planes : Start with the plane of smallest area then follow in order of increasing area.


Drop test height: 65cm


After the above drop tests are completed, normal operation shall be observed in each test sample without any defects in appearance.

4-9 Aging test

Subject the test samples to a cyclic aging test in an environment of $20\pm15^{\circ}{\rm C}$, $60\pm20\%\,{\rm RH}$, with the source voltage stepped UP by 10% of the rated value. Each cycle shall consist of an ON period of 25 minutes duration and an OFF period of 5 minutes duration.

After 500 hours of testing, normal operation shall be observed without any defects in appearance. (Check at specified measurement check points (250 hours and 500 hours after test start).)

